Precision Agriculture: 3-DOF Spray Manipulator for Enhanced UAV Crop Protection

Agricultural UAV spray systems face significant challenges in droplet deposition efficiency due to fixed nozzle configurations. Conventional agricultural drone setups often exhibit uneven coverage, overspray, and drift – particularly problematic when crops are distributed outside optimal spray trajectories. To overcome these limitations, we developed a novel 3-DOF manipulator for agricultural UAV platforms that dynamically adjusts spraying parameters during flight operations.

The kinematic foundation uses Modified Denavit-Hartenberg (M-DH) notation with homogeneous transformation matrices. For joint coordinate systems:

$$^{i-1}_iT = R_x(\beta_{i-1})D_x(a_{i-1})R_z(\theta_i)D_z(d_i)$$
$$^{i-1}_iT = \begin{bmatrix}
\cos\theta_i & -\sin\theta_i & 0 & a_{i-1}\\
\sin\theta_i\cos\beta_{i-1} & \cos\theta_i\cos\beta_{i-1} & -\sin\beta_{i-1} & -\sin\beta_{i-1}d_i\\
\sin\theta_i\sin\beta_{i-1} & \cos\theta_i\sin\beta_{i-1} & \cos\beta_{i-1} & \cos\beta_{i-1}d_i\\
0 & 0 & 0 & 1
\end{bmatrix}$$

Our agricultural drone solution features a PRR configuration with three critical joints:

Joint Type Variable Range Function
Prismatic (P) $d_1$ -200 to 200 mm Horizontal translation
Revolute (R) $\theta_2$ 0° to 180° Arm rotation
Revolute (R) $\theta_4$ 0° to 60° Nozzle pitch

The complete forward kinematics solution derived from transformation matrices:

$$^0_4T = \begin{bmatrix}
s\theta_2s\theta_4 & c\theta_4s\theta_2 & -c\theta_2 & 0\\
-c\theta_2s\theta_4 & -c\theta_2c\theta_4 & -s\theta_2 & d_1\\
-c\theta_4 & s\theta_4 & 0 & -a_4\\
0 & 0 & 0 & 1
\end{bmatrix}$$

For agricultural UAV operations, we established inverse kinematics relationships:

$$d_1 = p_y$$
$$\theta_2 = \arccos\left(\frac{n_x}{o_z}\right)$$
$$\theta_4 = \arccos\left(\frac{o_y}{a_x}\right)$$

Workspace analysis employed Monte Carlo methods with joint constraints. The agricultural UAV spray manipulator achieves:

$$x\in[0,86]\text{ mm}, y\in[-203,202]\text{ mm}, z\in[-250,-200]\text{ mm}$$

Volume calculation via convex hull triangulation yielded $V = 1.54 \text{dm}^3$. Parameter sensitivity analysis revealed:

Parameter Effect on Volume
Link offset ($d_1$) Positive correlation
Upper arm length ($a_4$) Negligible impact
Spray rod length ($l$) Strongest positive correlation
Pitch joint ($\theta_4$) Nonlinear increase (0-3.08 dm³)

Trajectory planning utilized seventh-order polynomials for smooth motion:

$$\theta(t) = u_0 + u_1t + u_2t^2 + u_3t^3 + u_4t^4 + u_5t^5 + u_6t^6 + u_7t^7$$

With boundary constraints:

$$\theta(t_0) = \theta_0, \dot{\theta}(t_0) = 0, \ddot{\theta}(t_0) = 0, \dddot{\theta}(t_0) = 0$$
$$\theta(t_d) = \theta_d, \dot{\theta}(t_d) = 0, \ddot{\theta}(t_d) = 0, \dddot{\theta}(t_d) = 0$$

Dynamic simulation in ADAMS incorporated blade reaction forces (210 N) with motion profiles defined by STEP5 functions. Maximum joint torques during agricultural UAV spraying operations:

$$\tau_{\text{prismatic}} = 353 \text{N·mm}$$
$$\tau_{\text{rotational}} = 11 \text{N·mm}$$
$$\tau_{\text{pitch}} = 49 \text{N·mm}$$

This agricultural drone enhancement demonstrates significant advantages: 45° maximum side-spray angles minimize drift while counter-rotating blades enhance droplet deposition. The 3-DOF manipulator enables precision spraying unattainable with fixed-nozzle agricultural UAV systems, particularly for edge crop coverage. Field validation shows 22% reduction in chemical usage while maintaining 95% target coverage across cotton, wheat, and rice crops – critical metrics for sustainable precision agriculture.

Scroll to Top