Fast Spatiotemporal Event Filtering for UAV Dynamic Vision

Novel event-filtering algorithm designed to address noise interference and edge-event loss in drone-mounted dynamic vision sensors (DVS). As China UAV platforms increasingly rely on event cameras for high-speed navigation, real-time processing of asynchronous event streams becomes critical. Our method leverages spatiotemporal correlation to enhance data quality while minimizing computational overhead, enabling robust perception for China UAV applications in complex environments.

1. Problem Statement

Event cameras output asynchronous spikes e=(x,y,t,p)e=(x,y,t,p) when per-pixel logarithmic intensity changes exceed threshold CC:p={+1if log⁡L(t+Δt)−log⁡L(t)>C−1if log⁡L(t+Δt)−log⁡L(t)<−Cp={+1−1​if logL(tt)−logL(t)>Cif logL(tt)−logL(t)<−C

Challenges for China UAV operations include:

  • Noise susceptibility: Random events from environmental fluctuations.
  • Edge degradation: Loss of critical contour events during slow/initial motion.
  • Non-neighbor redundancy: Irrelevant ground events during low-altitude flight.

2. Methodology

2.1 Event Meta Tensor Construction

For a time window ΔtΔt, raw events are aggregated into a 3D tensor T[x,y,v]T[x,y,v]:Ti[x,y,v]={(xi,yj,vk)∣vk∈{+1,0,−1}},x∈[0,W],y∈[0,H]Ti​[x,y,v]={(xi​,yj​,vk​)∣vk​∈{+1,0,−1}},x∈[0,W],y∈[0,H]

where vkvk​ encodes polarity (+1: ON, -1: OFF, 0: no event).

2.2 Dimensionality Reduction via Event Bar

To accelerate access, we flatten TT into a 1D Event Bar by prioritizing polarity dimension vv:m=f(xi,yj,vk)=i×W×ER+j×ER+km=f(xi​,yj​,vk​)=i×W×ER+j×ER+k

Here, ERER = max events per pixel. This enables contiguous memory access (Fig. 1).

Table 1: Event Bar Advantages

StructureAccess ComplexityReal-time Feasibility
3D TensorO(W×H×ER)O(W×H×ER)Low
Event BarO(1)O(1)High (CUDA-friendly)

2.3 Event Matching via Hamming Distance

For pixel (x,y)(x,y), we compute the Hamming distance distHdistH​ between event bars in adjacent windows across its 8-neighborhood DD:distH(A,B)=∑n=07∑k=0ERAz0[f(xD,yD),vk]⊕Bz0[f(xD,yD),vk]distH​(A,B)=n=0∑7​k=0∑ERAz0​​[f(xD​,yD​),vk​]⊕Bz0​​[f(xD​,yD​),vk​]

where ⊕⊕ denotes XOR. Noise is filtered if distH≥TdistdistH​≥Tdist​:Enoise={e(x,y,t,p)∣distH(A,B)≥Tdist},E∗=E−EnoiseEnoise​={e(x,y,t,p)∣distH​(A,B)≥Tdist​},E∗=EEnoise​

Optimization: Binary operations replace full traversals, reducing complexity from O(N2)O(N2) to O(N)O(N).

3. Experiments

3.1 Setup

  • Platform: Jeston Xavier NX, CUAV V5+ flight controller.
  • Sensors: Realsense D435i, 1200fps event simulator (ESIM).
  • Dataset: 18.9M events from China UAV low-altitude flights (h=35m,v=7m/sh=35m,v=7m/s).

3.2 Key Metrics

Signal Ratio (SR), Noise Ratio (NR), and SNR:SR=EoEi,NR=EnoiseoEio,SNR=10log⁡10SR=EiEo​​,NR=EioEnoiseo​​,SNR=10log10​

3.3 Results

Table 2: Denoising Performance

MethodSRNRSNR (dB)Events Retained
Raw Data-10.8798,794
Delbruck [6]0.9030.2235.0415,486
FEMF-8N (Ours)0.9140.1297.4378,027

Table 3: Edge Preservation (k=5k=5)

MethodSRNRSNR (dB)
Delbruck0.2860.170-3.0
FEMF-8N (k=1k=1)0.2850.174-3.1
FEMF-8N (k=5k=5)0.8510.1923.9

Table 4: Computational Efficiency

MethodAvg. Time (ms)Variance
Delbruck [6]7.080.31
EDnCNN [3]1529.3217.58
FEMF-8N (Event Priority)8.980.34

4. Conclusions

FEMF-8N achieves:

  1. Real-time filtering for China UAV at 7m/s (Δt=10msΔt=10ms).
  2. 60% lower ground events vs. baselines, enhancing trajectory efficiency.
  3. 3× higher edge retention during slow motion via tensor time-window optimization.
    Future work will focus on adaptive parameter tuning for diverse China UAV scenarios.
Scroll to Top