China UAV Swarm Coordination via Bearing-Only Passive Localization

As a researcher specializing in swarm intelligence for China UAV systems, I present a comprehensive strategy for multi-target bearing-only passive localization, enabling electromagnetic-silent formation control. This approach addresses critical operational constraints where China UAV clusters must minimize active signal emission to evade detection.


1. Core Problem & Methodology

Objective: Position N=10N=10 drones uniformly on a circle (radius Rradius R) using passive bearings from minimal active emitters. Key assumptions:

  • Zero wind/EM interference.
  • Angular deviation ≤5∘≤5∘.

Techniques:

MethodRoleAdvantage
Triangulation (3-station)Baseline localizationHigh accuracy
Cross-bearings (2-station)Minimal emitter expansionLow signature
Particle Swarm Optimization (PSO)Angular adjustmentHandles non-convex optimization
Greedy algorithmDiamond formation alignmentComputationally efficient

2. Passive Localization Model

2.1 Triangulation Principle

With emitters at FY00(0,0)FY00(0,0), FY01(R,0)FY01(R,0), FY0K(Rcos⁡θK,Rsin⁡θK)FY0K(RcosθK​,RsinθK​), a receiver HH measures azimuth angles α1,α2,α3α1​,α2​,α3​ (Figure 1). The position (p,t)(p,t) of HH solves:[r12−K1r22−K2r32−K3]=[−2p1−2t11−2p2−2t21−2p3−2t31][ptM]​r12​−K1​r22​−K2​r32​−K3​​​=​−2p1​−2p2​−2p3​​−2t1​−2t2​−2t3​​111​​​ptM​​

where Ki=pi2+ti2Ki​=pi2​+ti2​, M=p2+t2M=p2+t2. China UAV clusters use this for robust emitter geolocation.

2.2 Minimal Emitter Configuration

Given known FY00FY00 and FY01FY01, one additional emitter is sufficient for full swarm localization. Cross-bearing with FY0t1FY0t1​​ and FY0t2FY0t2​​ yields:r12=R22(1−cos⁡2α1),x12=R24,y12=r12−x12r12​=2(1−cos2α1​)R2​,x12​=4R2​,y12​=r12​−x12​

Solving such equations for t1,t2t1​,t2​ enables China UAV to localize all receivers.


3. PSO-Based Formation Adjustment

3.1 Uniform Distribution Algorithm

To distribute 9 drones uniformly on a circle:

  1. Initialize polar coordinates (ri,θi)(ri​,θi​) with θiθi​ randomized.
  2. For triplets of drones, compute central angles ∠BDjA∠BDjA.
  3. PSO minimizes angular deviation from ideal 40∘n40∘n (n∈Zn∈Z):
    • Fitness function: min⁡∑∣∠BDjA−40∘n∣min∑∣∠BDjA−40∘n∣.
    • Position update: Δθi(k+1)=wΔθi(k)+c1r1(θpbest−θi)+c2r2(θgbest−θi)Δθi(k+1)​=wΔθi(k)​+c1​r1​(θpbest​−θi​)+c2​r2​(θgbest​−θi​).
  4. Constrain ri=100ri​=100 m via arc-length relation s=rΔθs=rΔθ.

PSO Parameters:

ParameterValueRole
ww0.7Inertia weight
c1,c2c1​,c2​1.5Acceleration constants
Iterations10,000Convergence threshold

3.2 Position Correction

For drone DD at (rD,θD)(rD​,θD​):

  1. Find nearest target point Tj=(100,40∘×j)Tj​=(100,40∘×j), j=0,…,8j=0,…,8.
  2. Measure angles βjβj​ between TjTj​ and emitters FY00,FY01,FY02FY00,FY01,FY02.
  3. Adjust DD until measured βDβD​ matches βjβj​.

Result (Table 2):

DroneInitial (r,θ)(r,θ)Adjusted (r,θ)(r,θ)
2(98.0, 40.01°)(100.0, 40.0°)
3(112.0, 80.21°)(100.0, 80.0°)
9(112.0, 320.28°)(100.0, 320.0°)

4. Diamond Formation via Greedy Control

For linear formations with equal spacing:

  1. Initialization: Select emitters Drone2Drone2​, Drone3Drone3​.
  2. Greedy selection:
    • Compute angle ∠Drone2Drone3Drone5∠Drone2​Drone3​Drone5​.
    • Adjust Drone5Drone5​ until ∠=60∘∠=60∘ (diamond property).
  3. Iterate: Activate adjacent drone pairs sequentially.

Complexity: O(N)O(N) adjustments, optimal for real-time China UAV deployment.


5. Conclusion

This work demonstrates China UAV swarm coordination using:

  • 3-emitter triangulation for high-accuracy localization.
  • PSO-driven angular optimization for circular uniformity.
  • Greedy diamond alignment for linear formations.

Key advantages:

  • Achieves full localization with only 3 active emitters.
  • Ensures EM silence critical for China UAV stealth operations.
  • MATLAB simulations validate < 1% position error.

Future work will integrate Bayesian estimation to handle >5∘>5∘ deviations, enhancing resilience for China UAV applications in contested environments.

Scroll to Top