UAV-Based Explosive Pile Characterization in Open-Pit Mines

1. Introduction

Open-pit mining dominates global coal production, with its share rising from 4.6% (2003) to 25.9% (2021). Blasting is a critical production step, where post-blast explosive pile morphology directly influences excavation, hauling, and waste disposal efficiency. Traditional monitoring using terrestrial laser scanners faces limitations:

  • Time Delays: Scanning requires post-blast site stabilization.
  • Labor Intensity: Manual setup in hazardous terrain.
  • Blind Spots: Occlusions in complex piles reduce data completeness.
    To overcome these, our team implemented unmanned aerial vehicle (UAV) photogrammetry for real-time, high-resolution pile characterization.

2. UAV Data Acquisition Framework

2.1. System Design

We deployed the DJI M300 unmanned aerial vehicle with key specifications:

ParameterValue
Max Flight Speed23 m/s
Max Ascent Speed6 m/s
Sensor Resolution45 MP
Positioning Accuracy3 cm

2.2. Flight Planning

Critical parameters ensure data accuracy:

  • Flight Height (HwHw​):Hw=f×SSDaHw​=af×SSD​Where ff = lens focal length (mm), SSDSSD = ground resolution (cm), aa = pixel size (mm).
  • Image Overlap: 70% (both along-track and cross-track) to minimize gaps.
  • Speed (vmaxvmax​):vmax=δmax×SSDtvmax​=tδmax​×SSD​Where δmaxδmax​ = max allowable pixel displacement, tt = exposure time (s).

2.3. Ground Control

Five ground control points (GCPs) with known 3D coordinates were placed around piles to georeference point clouds.


3. Explosive Pile Volume Calculation

3.1. Model Construction

UAV-derived point clouds generated:

  • Pre-Blast Models: High-wall, coal seam, and void geometries.
  • Post-Blast Models: Explosive pile morphology and adjacent spoil piles.

3.2. Volume Metrics

Key calculations:

  1. Post-Blast Volume (VsVs​): Total rock + coal volume.
  2. Pre-Blast Volume (V0V0​):V0=Vs−Vm−VLV0​=Vs​−Vm​−VL​Where VmVm​ = coal volume, VLVL​ = spoil pile interface volume.
  3. Bulking Factor (λλ):λ=VV1λ=V1​V​Where VV = fragmented rock volume, V1V1​ = in-situ rock volume.

Table 1: Volume Metrics from UAV Surveys

Blast DateVsVs​ (10⁴ m³)V0V0​ (10⁴ m³)VmVm​ (10⁴ m³)λλ
2023-03-28250.4163.4109.71.26
2023-05-10310.2180.8120.01.18
2023-06-20239.0152.584.81.34
2023-06-27254.2155.4107.31.34

4. Accuracy Validation

Model precision was evaluated using GCPs:

  • Planar Error (mpmp​):mp=±∑(Δx2+Δy2)nmp​=±n∑(Δx2+Δy2)​​
  • Elevation Error (meme​):me=±∑Δz2nme​=±n∑Δz2​​

Results:

  • mp=±0.13 mmp​=±0.13 m
  • me=±0.26 mme​=±0.26 m
    These met industry standards (CH/T 9015-2012): mp≤0.3 mmp​≤0.3 m, me≤0.5 mme​≤0.5 m.

5. Operational Advantages of UAVs

Table 2: UAV vs. Laser Scanning Performance

MetricUAVLaser Scanner
Data Acquisition Time<2 hours>6 hours
Labor Requirements2 operators4+ operators
Blind Spot CoverageFull coveragePartial
SafetyRemote operationHigh-risk deployment

The unmanned aerial vehicle system reduced field time by >4 hours per blast and eliminated personnel exposure to unstable piles.


6. Conclusion

Unmanned aerial vehicle photogrammetry revolutionizes explosive pile monitoring:

  1. Efficiency: Real-time data acquisition slashes decision-making delays.
  2. Precision: Sub-30 cm errors ensure reliable volume metrics.
  3. Safety: Operators avoid hazardous post-blast terrain.
    Future work will integrate AI for automated pile feature extraction, enhancing the scalability of unmanned aerial vehicle deployments in mining.
Scroll to Top