Robust Trajectory Tracking Control for Unmanned Aerial Vehicles Using Tube Invariant Sets

Unmanned Aerial Vehicle (UAV) technology faces significant challenges in trajectory tracking due to external disturbances and model uncertainties during flight operations. This research presents a novel composite control strategy integrating Tube-based Model Predictive Control (Tube-MPC) for position tracking and Compensation Function Observer-based Model Compensation Control (CFO-MCC) for attitude stabilization. The framework addresses bounded disturbances through robust invariant sets while compensating for model perturbations in real-time.

Quadrotor UAV Dynamic Modeling

The quadrotor dynamics are decoupled into position ($\mathbf{\xi} = [x, y, z]^T$) and attitude ($\mathbf{\Theta} = [\phi, \theta, \psi]^T$) subsystems. The inertial frame ($O_e$) and body frame ($O_b$) dynamics follow Newton-Euler formulations:

$$
\begin{cases}
\dot{\mathbf{\xi}} = \mathbf{v} \\
m\dot{\mathbf{v}} = \mathbf{R}_b^e \mathbf{F} + \mathbf{G} + \mathbf{D} \\
\dot{\mathbf{\Theta}} = \mathbf{W}\mathbf{\omega} \\
\mathbf{J}\dot{\mathbf{\omega}} = -\mathbf{\omega} \times \mathbf{J}\mathbf{\omega} + \mathbf{\tau} + \mathbf{d}
\end{cases}
$$

Where $\mathbf{R}_b^e$ is the rotation matrix, $\mathbf{F} = [0,0,u_1]^T$ denotes thrust, $\mathbf{G} = [0,0,-mg]^T$ represents gravity, and $\mathbf{D}, \mathbf{d}$ model disturbances. Disturbance bounds satisfy:

$$
\|\mathbf{\sigma}_D\| \leq \epsilon_D, \quad \|\mathbf{\sigma}_d\| \leq \epsilon_d
$$

Table 1 summarizes key physical parameters for drone technology implementation:

Parameter Description Value
$m$ Mass (kg) 0.318
$J_x$ $x$-axis inertia (kg·m²) $4.524 \times 10^{-3}$
$J_y$ $y$-axis inertia (kg·m²) $6.933 \times 10^{-3}$
$K_1,K_2$ Drag coefficients (N·s/m) 0.602

Controller Design

Position Control via Tube-MPC

Decompose position dynamics into nominal ($\mathbf{x}$) and error ($\mathbf{e}$) systems:

$$
\begin{cases}
\mathbf{x}(k+1) = \mathbf{A}_d\mathbf{x}(k) + \mathbf{B}_d u_x(k) \\
\mathbf{e}(k+1) = \mathbf{A}_d\mathbf{e}(k) + \mathbf{B}_d u_x^*(k) + \mathbf{\sigma}(k)
\end{cases}
$$

The control law combines nominal MPC and auxiliary feedback:

$$
u_x(k) = u_x^{\text{MPC}}(k) – \mathbf{K}\mathbf{e}(k)
$$

where $\mathbf{K}$ stabilizes $(\mathbf{A}_d – \mathbf{B}_d\mathbf{K})$. The robust invariant set $\mathbb{S}$ satisfies:

$$
\mathbf{A}_{\text{cl}}\mathbb{S} \oplus \mathbb{E}_D \subseteq \mathbb{S}, \quad \mathbf{A}_{\text{cl}} = \mathbf{A}_d – \mathbf{B}_d\mathbf{K}
$$

Table 2 lists Tube-MPC parameters for Unmanned Aerial Vehicle control:

Parameter Description Value
$N_p$ Prediction horizon 10
$N_c$ Control horizon 5
$\mathbb{S}$ Robust invariant set $[-0.527, 0.527]$

Attitude Control via CFO-MCC

The structure includes:

  1. High-Order Differentiator (HOD): Tracks reference derivatives
  2. Compensation Function Observer (CFO): Estimates total disturbances
  3. Model Compensation Law: Provides robust tracking

Roll channel dynamics with disturbance $f_\phi$:

$$
\ddot{\phi} = b_\phi u_2 + f_\phi(\phi, p, \sigma_4)
$$

HOD extracts reference derivatives ($\hat{\dot{\phi}}_d, \hat{\ddot{\phi}}_d$) with bandwidth $a_h$:

$$
\begin{cases}
\dot{v}_1 = v_2 + l_{h1}(\phi_d – v_1) \\
\dot{v}_2 = v_3 + l_{h2}(\phi_d – v_1) \\
\dot{v}_3 = l_{h3}(\phi_d – v_1)
\end{cases}
$$

CFO estimates states and disturbances with bandwidth $a_c$:

$$
\begin{cases}
\dot{z}_1 = z_2 + l_{c1}(\phi – z_1) \\
\dot{z}_2 = z_3 + l_{c2}(\phi – z_1) + b_\phi u_2 \\
\dot{z}_3 = l_{c3}(\phi – z_1)
\end{cases}
$$

Simulation Experiments

Tests compare Tube-MPC against MPC, LQR, and PID controllers under disturbances:

$$
\mathbf{\sigma} = \begin{bmatrix} 0.5\sin(0.1t) + \eta \\ 0.5\sin(0.1t + \pi/3) + \eta \\ 0.2\sin(0.1t + \pi/7) + \eta \end{bmatrix}, \quad \eta \sim \mathcal{N}(0, 0.1)
$$

Trajectory tracking performance metrics:

Controller RMSE (m) Max Overshoot (%) Settling Time (s)
Tube-MPC 0.072 2.5 2.10
MPC 0.141 14.6 4.43
PID 0.693 13.3 9.57

Tube-MPC reduces trajectory tracking error by 49% compared to MPC during turns and maintains position within 0.0659m under 3.5m/s wind disturbances.

Flight Tests

Real-world validation used ZY-X150 drones (350g mass, 150mm wheelbase) with optical positioning. Key results:

Position Holding Accuracy

Controller Max Error (m) Disturbance Rejection (m)
Tube-MPC 0.112 0.0659
MPC 0.232 0.1748
PX4 Baseline 0.991 0.2641

Circular Trajectory Tracking

Tube-MPC achieved 0.072m RMSE at 0.3rad/s angular velocity, outperforming MPC by 49% in maximum turn error.

Conclusion

This work demonstrates that Tube-MPC/CFO-MCC integration significantly enhances Unmanned Aerial Vehicle trajectory tracking under bounded disturbances. Key advantages include:

  1. 48% reduction in tracking error versus conventional MPC
  2. Disturbance rejection within 0.0659m under 3.5m/s winds
  3. Real-time computational feasibility for embedded systems

The framework advances drone technology for applications requiring precise motion control in uncertain environments. Future work will address high-speed maneuver limitations through adaptive Tube sets and onboard implementation.

Scroll to Top