EKF-RS Dual Smoothing Trajectory Prediction Algorithm for Enhanced UAV Interception

As drone technology advances, Unmanned Aerial Vehicles (UAVs) have become critical military assets requiring effective countermeasures. Interception missions demand precise and smooth trajectory predictions to minimize energy consumption and prevent command oscillations in autonomous interceptors. Traditional Extended Kalman Filter (EKF) approaches exhibit significant fluctuations when tracking highly maneuverable UAVs, compromising interception success rates. We address this limitation through a novel EKF-RS algorithm that integrates dual smoothing techniques for superior trajectory prediction.

Theoretical Foundations

Our approach combines three core methodologies:

Extended Kalman Filter

EKF handles nonlinear systems through first-order Taylor approximations. For drone technology applications, we model UAV dynamics using Constant Velocity (CV) and Constant Acceleration (CA) models:

$$ \mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \mathbf{w}_{t-1} $$
$$ \mathbf{z}_t = \mathbf{H}\mathbf{x}_t + \mathbf{v}_t $$

Where state vector $\mathbf{x}_t$ contains position, velocity, and acceleration components. CV and CA transition matrices are:

$$ \mathbf{F}_{\text{CV}} = \begin{bmatrix}
1 & 0 & T & 0 & 0 & 0 \\
0 & 1 & 0 & T & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \quad
\mathbf{F}_{\text{CA}} = \begin{bmatrix}
1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
0 & 0 & 1 & 0 & T & 0 \\
0 & 0 & 0 & 1 & 0 & T \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} $$

RTS Smoothing

Rauch-Tung-Striebel smoothing refines EKF estimates through backward passes:

$$ \mathbf{G}_{t-1} = \mathbf{P}_{t-1}\mathbf{F}^T(\mathbf{P}_t^-)^{-1} $$
$$ \hat{\mathbf{x}}_{t-1}^s = \hat{\mathbf{x}}_{t-1} + \mathbf{G}_{t-1}(\hat{\mathbf{x}}_t^s – \hat{\mathbf{x}}_t^-) $$
$$ \mathbf{P}_{t-1}^s = \mathbf{P}_{t-1} + \mathbf{G}_{t-1}(\mathbf{P}_t^s – \mathbf{P}_t^-)\mathbf{G}_{t-1}^T $$

Savitzky-Golay Filtering

SG filtering preserves kinematic trends using local polynomial fitting:

$$ \hat{y}_i = \sum_{j=-m}^{m} c_j y_{i+j} $$

Where $2m+1$ defines the smoothing window and $c_j$ are convolution coefficients.

Algorithm Design

Our EKF-RS framework addresses EKF’s volatility through dual-smoothing fusion within sliding windows:

Module Function Parameters
Sliding Window Maintains L-step history L=5 (default)
EKF Core State estimation Q=0.1, R=0.03
RTS Smoother Trajectory smoothing Fixed-interval
SG Filter Trend preservation 2nd-order polynomial
Fusion Engine Optimal weighting Adaptive λ

The fusion process minimizes this objective function:

$$ J = \frac{1}{N} \sum_{k=1}^{N} \left[ \lambda \| \hat{\mathbf{x}}_k^f – \hat{\mathbf{x}}_k^{\text{SG}} \|^2 + (1-\lambda) \| \hat{\mathbf{x}}_k^f – \hat{\mathbf{x}}_{k-1}^f \|^2 \right] $$

Producing optimal smoothed estimates:

$$ \hat{\mathbf{x}}^f = \mathbf{A}\hat{\mathbf{x}}^s + \mathbf{B}\hat{\mathbf{x}}^{\text{SG}} \quad \text{where} \quad \mathbf{A} + \mathbf{B} = \mathbf{I} $$

Simulation Analysis

We validated our approach using simulated UAV trajectories under CV and CA models:

Performance Metrics (50 Monte Carlo Runs)
Algorithm CV RMSE (m) CA RMSE (m) Smoothness Index
EKF 4.32 ± 0.87 5.91 ± 1.24 0.38 ± 0.12
EKF-SG 3.15 ± 0.62 4.83 ± 1.05 0.21 ± 0.08
EKF-RS 1.89 ± 0.41 2.57 ± 0.73 0.09 ± 0.03

Critical observations from trajectory analysis:

  • Smoothness Enhancement: EKF-RS reduced trajectory fluctuations by 76.3% versus EKF
  • Error Reduction: 56.2% lower RMSE in CA scenarios compared to EKF-SG
  • Trend Preservation: Maintained kinematic consistency during acceleration phases

Interception Implications

This drone technology advancement significantly impacts Unmanned Aerial Vehicle interception:

$$ \Delta E_{\text{intercept}} \propto \frac{1}{\text{Smoothness Index}} \times \text{RMSE} $$

Implementation benefits include:

  1. 35-40% reduction in interceptor energy consumption
  2. Command oscillation amplitude decreased by 68%
  3. Real-time operation at 20Hz update rates

Conclusion

Our EKF-RS algorithm demonstrates significant improvements in UAV trajectory prediction by achieving 56.2% higher accuracy and 76.3% smoother outputs than conventional EKF. The dual-smoothing approach effectively balances precision and smoothness through adaptive fusion of RTS and SG techniques. Future work will integrate neural networks for dynamic weight optimization across diverse drone technology scenarios. This advancement in Unmanned Aerial Vehicle tracking directly enhances interception system effectiveness while reducing operational energy requirements.

Scroll to Top